引言

前面介绍了使用RAG-GPT和OpenAI快速搭建LangChain官网智能客服。有些场景,用户可能无法通过往外网访问OpenAI等云端LLM服务,或者由于数据隐私等安全问题,需要本地部署大模型。本文将介绍通过RAG-GPT和Ollama搭建智能客服。

RAG技术原理介绍

在介绍RAG-GPT项目之前,我们首先要理解RAG的基本原理,RAG在问答系统中的一个典型应用主要包括三个模块,分别是:

  • Indexing(索引):将文档分割成chunk,编码成向量,并存储在向量数据库中。
  • Retrieval(检索):根据用户输入query和向量数据库中chunks语义相似度检索与问题最相关的前k个chunk,形成本次问答的上下文。
  • Generation(生成):将原始问题和检索到的chunks整合形成合适的prompt一起输入到LLM中,让LLM输出与上下文有关的回答。

智能文档的在线检索流程可以用一张图说明,上图中展示了一个完整的问答流程:

  • 用户发起query
  • 结合Bot实际应用场景,评估是否对query进行rewrite
  • Retieval模块根据query检索出Indexing中的相关的文档
  • 将召回的文档进行Reranking
  • 并且根据relevance score进行过滤,过滤掉低质的文档
  • 形成合适的Prompt后输入到LLM大模型中,最后生成答案

以上是对RAG技术的基本介绍,如果想深入了解技术细节可以参考这篇文章:RAG技术全解析:打造下一代智能问答系统。

如何快速实现RAG的智能问答系统?

从RAG的原理介绍中可以看到要实现RAG整套架构还是存在一定工作量,需要构建索引、检索、集成LLM、Prompt优化等一系列模块,具有一定的难度。

基于此,RAG-GPT提供了一整套开源解决方案,旨在利用LLM和RAG技术快速搭建一个全功能的客服解决方案。该项目基于Flask框架,包括前端用户界面、后端服务和管理员控制台,为企业利用LLM搭建智能客服等对话场景提供了一个完整的自动化解决方案,可以帮助开发者快速搭建一个智能问答系统,且代码完全开源。
项目地址:
github.com/open-kf/rag…

RAG-GPT的基本架构

RAG-GPT关键特性:

  • 内置LLM支持:支持云端LLM和本地LLM。
  • 快速设置:只需五分钟即可部署生产级对话服务机器人。
  • 多样化知识库集成:支持多种类型的知识库,包括网站、独立URL和本地文件。
  • 灵活配置:提供用户友好的后台,配备可定制的设置以简化管理。
  • 美观的用户界面:具有可定制且视觉上吸引人的用户界面。

从特性可以知道,RAG相比一些商业收费的基于知识库的问答系统优势在于:

  • 易用、快速搭建。
  • 能自主管理知识库,避免商业秘密和知识产权泄漏。
  • 可以自主选择LLM模型和甚至扩展部署本地模型。

RAG-GPT 快速搭建智能问答系统

RAG-GPT的基本组成分为三部分:

  • 智能问答后端服务
  • 管理后台系统
  • 用户使用的ChatBot UI。

下面,将介绍如何启动RAG-GPT项目和使用这三个模块,将RAG-GPT集成到你的网站只需要5个步骤:

1. 下载源代码,通过Git克隆RAG-GPT的GitHub仓库:

bash
复制代码
git clone https://github.com/open-kf/rag-gpt.git && cd rag-gpt

2.配置环境变量

[!NOTE]

我们首先需要下载&安装Ollama

然后下载Embedding模型和LLM底座模型。

Ollama启动默认绑定的IP:PORT是127.0.0.1:11434,可以参考这篇文档修改默认配置。

Embedding模型我们选择mxbai-embed-large

LLM底座模型我们选择llama3

在启动RAG-GPT服务之前,需要修改相关配置,以便程序正确初始化。

bash
cp env_of_ollama .env

.env 文件中的变量

ini
LLM_NAME="Ollama"
OLLAMA_MODEL_NAME="xxxx"
OLLAMA_BASE_URL="http://127.0.0.1:11434"
MIN_RELEVANCE_SCORE=0.3
BOT_TOPIC="OpenIM"
URL_PREFIX="http://127.0.0.1:7000/"
USE_PREPROCESS_QUERY=0
USE_RERANKING=1
USE_DEBUG=0

对 .env 中的变量做以下调整:

  • 不要修改 LLM_NAME
  • 更新 OLLAMA_MODEL_NAME 设置,这里我们使用llama3,请求和响应的API接口,可以和OpenAI兼容。
  • 更新 OLLAMA_BASE_URL 设置,我们修改为http://192.168.2.36:11434。注意,这里只需要配置IP:PORT,尾部不要加上 / 或者其它URI。
  • BOT_TOPIC 更改为你的机器人的名称。这非常重要,因为它将在构造Prompt中使用。我在这里要搭建关于OpenSSL Cookbook的智能客服,所以改写为OpenSSL。
  • 调整 URL_PREFIX 以匹配你的网站的域名。
  • 有关常量的含义和用法的更多信息,可以查看 server/constant 目录下的文件。

3.执行启动命令

分别执行以下命令,即可启动。

[!NOTE]

请使用 Python 3.10.x 或以上版本。

先安装python依赖项

python3 -m venv myenv
bash
source myenv/bin/activate
pip install -r requirements.txt

启动项目即可:

python create_sqlite_db.py
python rag_gpt_app.py

或者执行

sh start.sh

4.快速体验聊天效果

  • 启动服务后先打开管理后台。

首先要登录到管理后台,浏览器输入:
http://192.168.2.36:7000/open-kf-admin/
登录账号为:admin 密码 :open_kf_AIGC@2024 .

  • 导入知识库,这里上传openssl-cookbook.pdf。

在管理后台切换到 Source tab,从本地磁盘上传openssl-cookbook.pdf,
然后点击 Upload 即可一键上传本地文档作为知识库。

上传本地文档到服务端后,初始状态是 Recorded。 服务端会通过一个异步任务解析上传的文档,并且计算Embedding,然后存入向量数据库。

服务端处理完后,可以看到上传文档的日志。

在admin页面,在管理后台上,上传文档展示的状态都是 Trained 。

浏览器打开
http://192.168.2.36:7000/open-kf-chatbot/,就可以访问Bot了。

5.一键嵌入到网站

RAG-GPT提供了将聊天机器人嵌入到网站的方法,使得用户可以直接在网站上使用智能问答服务。
打开管理后台菜单切换到embed,复制两个代码即可实现一键嵌入,这两个代码片效果分别如下:一个是iframe嵌入一个聊天窗口,一个是在页面右下角点击弹出聊天窗口。
可以新建一个文本文件,将代码复制进去,用浏览器打开就可以看到嵌入效果了。

6.管理后台其他功能

  • 管理员可以通过仪表板查看用户的历史请求记录,以便进行分析和优化。

可以按照时间、用户查询聊天记录和修改问答对的答案以更符合自身需求。

  • 配置聊天对话的UI

用户可以定制化聊天对话框的风格,使其更符合自身网站的风格特性。

结语

RAG-GPT项目具备开源免费、易于部署集成、开箱即用和功能丰富的特点,为LLM大模型在特定领域的应用落地提供了一套企业级的解决方案。RAG-GPT已经支持本地文件知识库,集成国内LLM大模型等特性,使得RAG-GPT满足更多样化的需求。

关于我们

OpenIM是领先的开源即时通讯(IM)平台,目前在GitHub上的星标已超过13k。随着数据和隐私安全的重视以及信息技术的快速发展,政府和企业对于私有部署的IM需求急剧增长。OpenIM凭借“安全可控”的特点,在协同办公软件市场中占据了一席之地。在后AIGC时代,IM作为人机交互的首要接口,其价值愈发重要,OpenIM期待在此时代扮演更关键的角色。

基于这样的视角,我们最近开源了RAG-GPT项目,已被部分企业采用并持续完善中。
如果您对RAG-GPT感兴趣,可以访问以下链接了解更多信息:

项目地址:
github.com/open-kf/rag…

在线Demo: demo.rentsoft.cn/

我们的目标是改进文件管理功能,更有效地管理数据,并整合企业级知识库。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

Logo

尧米是由西云算力与CSDN联合运营的AI算力和模型开源社区品牌,为基于DaModel智算平台的AI应用企业和泛AI开发者提供技术交流与成果转化平台。

更多推荐