Transformer原理解析及机器翻译的应用
基于Seq2Seq模型的机器翻译引入Attention的Seq2Seq模型-机器翻译Transformer首先,可以思考为什么会需要Transformer?大部分的机器翻译等序列生成任务都是基于Encoder-Decoder的模式,而Encoder和Decoder一般是由RNN、LSTM、GRU其中一种,它们的特点就是:每个时刻的输出是根据上一时刻隐藏层state和当前时刻的输入,由这样的方式来实
Transformer
首先,可以思考为什么会需要Transformer?
-
大部分的机器翻译等序列生成任务都是基于Encoder-Decoder的模式,而Encoder和Decoder一般是由RNN、LSTM、GRU其中一种,它们的特点就是:每个时刻的输出是根据上一时刻隐藏层state和当前时刻的输入,由这样的方式来实现产生序列。
那这样的特点就会导致无法并行计算,因为每次计算都需要等待上一时刻的计算完成。
-
每个时刻的输出只与上一时刻的输出和当前时刻的输入相关,这会导致两个问题:
a. 对于长序列,这样一层一层地传递,前面时刻的信息到了后面基本就消失了;
b. 对于文本问题,每个时刻的输出不仅与上一时刻相关,还可能与前n个时刻相关,循环神经网络难以学习相对位置较远的文本之间的关系。
网络结构
与以往的Encoder-Decoder模型不同的是:
- 完全没有RNN等循环神经网络;
- 由于没有循环神经网络,所以加入位置编码,来代表不同位置的信息;
- 用Attention来代替循环神经网络,并且是多头注意力Multi-Head Attention。
位置编码 Positional Encoding
首先,正如上述,由于没有循环神经网络,所以加入位置编码,来代表不同位置的信息;
另外:
- 论文解释了选择这个位置编码函数的原因:这个函数让模型更容易学习到相对位置的信息,因为任何位置下的 P E p o s + k PE_{pos+k} PEpos+k都可以用 P E p o s PE_pos PEpos来线性表示;
- Google也试过用位置embedding来表示位置编码,两者的效果接近,但是上述方法可以接受超过训练集最大长度的序列。
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
"""
生成0-position的位置编码
:param position: 最大的位置id
:param d_model:
:return:
"""
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# 将 sin 应用于数组中的偶数索引(indices);2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# 将 cos 应用于数组中的奇数索引;2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
Encoder
从上图可以看出,左边的Encoder由Multi-Head Attention -->> 残差连接(Add) & LayerNorm -->> 前馈网络(Feed Forward)–>> 残差连接(Add) & LayerNorm -->> output
Multi-Head Attention
首先,来解析Multi-Head Attention的结构,如下图,
- 输入由Queries、Keys、Values组成,
- 然后经过一层Linear层,其实就是Dense,并且被拆分为多头。
- 接着又经过一层Scaled Dot-Product Attention;
- 再跟着,将多头Scaled Dot-Product Attention输出进行拼接;
- 最后,经过一层Linear层,得到Multi-Head Attention的输出
class MultiHeadAttention(tf.keras.layers.Layer):
"""
多头注意力模型
"""
def __init__(self, d_model, num_heads):
"""
:param d_model: 模型输出维度
:param num_heads: 注意力的头数
"""
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
# 将d_model拆分为num_heads个深度为depth的注意力头,d_model = num_heads*depth
assert d_model % self.num_heads == 0
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
"""
将d_model拆分为num_heads个深度为depth的注意力头
分拆最后一个维度到 (num_heads, depth).
转置结果使得形状为 (batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
scaled_attention, attention_weights = scaled_dot_product_attention(
q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention,
perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
concat_attention = tf.reshape(scaled_attention,
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
return output, attention_weights
Scaled Dot-Product Attention
那么,Scaled Dot-Product Attention又是怎么样的结构呢?
- 首先,输入就是上面提到的,经过拆分多头的Q、K、V;
- 接着,Q和K进行矩阵相乘,并进行缩放;
- 然后,加入Mask,再使用SoftMax函数;
- 最后,与V矩阵相乘得到输出。
具体公式如下:
在这有两个疑点:
-
为什么Q与K相乘之后需要缩放呢,并且是 d k d_k dk,即K的深度?
google在对比试验发现缩放的效果比未缩放的效果好,怀疑是由于随着 d k d_k dk越大,会使得SoftMax层的梯度变得比较小。
-
为什么需要在这里接入SoftMax层?
因为接入Mask之后,被遮挡的部分会变为绝对值非常大的负数,那么SoftMax可以将其归零。
def scaled_dot_product_attention(q, k, v, mask):
"""
在Encoder中,q、k和v都是source词向量
在Decoder中,q和k是Encoder的输出,v是target词向量经过多注意力等网络的输出
:param q: query, [..., seq_len_q, depth]
:param k: keys, [..., seq_len_k, depth]
:param v: values, [..., seq_len_v, depth]
:param mask: [..., seq_len_q, seq_len_k]
:return: output,attention_weights
"""
matmul_qk = tf.matmul(q, k, transpose_b=True) # [..., seq_len_q, seq_len_k]
# 缩放matmul_qk
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
# 加入mask
scaled_attention_logits += (mask * -1e9)
# softmax目的一是归一化得到attention_weights,
# 二是加上mask之后,mask的位置是绝对值很大的负数,softmax可以将其清零
# [..., seq_len_q, seq_len_k]
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v) # [..., seq_len_q, depth_v]
return output, attention_weights
在这里,要提下mask的形式,mask:[…, seq_len_q, seq_len_k]
接入mask的matmul_qk:[…, seq_len_q, seq_len_k]
因为mask其实就是在文本长度这个维度上进行mask,那么Q对应的维度为seq_len_q,K对应的维度为seq_len_k,相乘之后的matmul_qk即为[…, seq_len_q, seq_len_k]。
所以,mask的形式必须是[…, seq_len_q, seq_len_k],才能对matmul_qk完成对Q和K的遮挡。
Mask
这跟大部分的NLP任务一样,需要对不定长的文本进行填充,所以对填充的部分进行Mask,结合Scaled Dot-Product Attention的需要,填充的部分mask值为1,其他的为0。
用于Encoder,以及Decoder的第二个Attention中。
def create_padding_mask(seq):
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
其此之外,还需要多增加另外一种Mask,因为Transformer中,由于其结构的特点,会同时使用所有位置的输入,但这在翻译任务中是不合理,我们只能基于第一个词预测第二个词,基于第一个词和第二个词预测第三个词…
用于Decoder的第一个Attention中
def create_look_ahead_mask(size):
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
return mask # (seq_len, seq_len)
x = tf.random.uniform((1, 3))
temp = create_look_ahead_mask(x.shape[1])
temp
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0., 1., 1.],
[0., 0., 1.],
[0., 0., 0.]], dtype=float32)>
def create_masks(inp, tar):
# 编码器填充遮挡
enc_padding_mask = create_padding_mask(inp)
# 在解码器的第二个注意力模块使用。
# 该填充遮挡用于遮挡编码器的输出。
dec_padding_mask = create_padding_mask(inp)
# 在解码器的第一个注意力模块使用。
# 用于填充(pad)和遮挡(mask)解码器获取到的输入的后续标记(future tokens)。
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
dec_target_padding_mask = create_padding_mask(tar)
combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
return enc_padding_mask, combined_mask, dec_padding_mask
前馈网络(Feed Forward)
前馈网络就比较简单吗由两个全连接层组成,然后第一个全连接层有一个relu激活函数。
def point_wise_feed_forward_network(d_model, dff):
return tf.keras.Sequential([
tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff)
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
])
残差连接
请注意,Multi-Head Attention不是简单经过LayerNorm,然后传递给前馈网络,而是还加了一步残差连接的操作:残差连接有助于避免深度网络中的梯度消失问题。
Encoder Layer
这样,我们的Encoder就全部组成完成了。
class EncoderLayer(tf.keras.layers.Layer):
"""
Encoder网络层。
source输入q,k,v -->> 多头注意力层 -->> residual connection & LayerNormalization -->>
前馈网络 -->> residual connection & LayerNormalization
"""
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(EncoderLayer, self).__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
def call(self, x, training, mask):
attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model)
attn_output = self.dropout1(attn_output, training=training)
# a residual connection
out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model)
ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model)
return out2
class Encoder(tf.keras.layers.Layer):
"""
词向量+位置编码 -->> N个EncoderLayer -->> 最后一层EncoderLayer的输出
"""
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
maximum_position_encoding, rate=0.1):
super(Encoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
self.pos_encoding = positional_encoding(maximum_position_encoding,
self.d_model)
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
for _ in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(rate)
def call(self, x, training, mask):
seq_len = tf.shape(x)[1]
# 将嵌入和位置编码相加。
x = self.embedding(x) # (batch_size, input_seq_len, d_model)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)
for i in range(self.num_layers):
x = self.enc_layers[i](x, training, mask)
return x # (batch_size, input_seq_len, d_model)
Decoder
了解了Encoder的结构之后,Decoder其实基本上是一样的,不同的就是:Decoder包含两个Multi-Head Attention,第一个是接收target words embedding,第二个是接收Encoder的输出和Decoder第一个Attention的输出。
class DecoderLayer(tf.keras.layers.Layer):
"""
Decoder网络层。
target输入v -->> 多头注意力层 -->> residual connection & LayerNormalization -->>
output & Encoder_output -->> 多头注意力层 -->> residual connection & LayerNormalization -->>
前馈网络 -->> residual connection & LayerNormalization
-->> Linear -->> softmax
"""
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(DecoderLayer, self).__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
self.dropout3 = tf.keras.layers.Dropout(rate)
def call(self, x, enc_output, training,
look_ahead_mask, padding_mask):
# enc_output.shape == (batch_size, input_seq_len, d_model)
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) # (batch_size, target_seq_len, d_model)
attn1 = self.dropout1(attn1, training=training)
out1 = self.layernorm1(attn1 + x)
attn2, attn_weights_block2 = self.mha2(
enc_output, enc_output, out1, padding_mask) # (batch_size, target_seq_len, d_model)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorm2(attn2 + out1) # (batch_size, target_seq_len, d_model)
ffn_output = self.ffn(out2) # (batch_size, target_seq_len, d_model)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layernorm3(ffn_output + out2) # (batch_size, target_seq_len, d_model)
return out3, attn_weights_block1, attn_weights_block2
class Decoder(tf.keras.layers.Layer):
"""
target词向量+位置编码 -->> N个DecoderLayer -->> 最后一层DecoderLayer的输出
"""
def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size,
maximum_position_encoding, rate=0.1):
super(Decoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)
self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate)
for _ in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(rate)
def call(self, x, enc_output, training,
look_ahead_mask, padding_mask):
seq_len = tf.shape(x)[1]
attention_weights = {}
x = self.embedding(x) # (batch_size, target_seq_len, d_model)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)
for i in range(self.num_layers):
x, block1, block2 = self.dec_layers[i](x, enc_output, training,
look_ahead_mask, padding_mask)
attention_weights['decoder_layer{}_block1'.format(i + 1)] = block1
attention_weights['decoder_layer{}_block2'.format(i + 1)] = block2
# x.shape == (batch_size, target_seq_len, d_model)
return x, attention_weights
Transformer
最后,将包含Multi-Head Attention的Encoder-Decoder组合起来,就是Transformer了。
class Transformer(tf.keras.Model):
"""
Encoder输出 -->> Decoder输出 -->> Linear层输出
"""
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
target_vocab_size, pe_input, pe_target, rate=0.1):
"""
:param num_layers: EncoderLayer和DecoderLayer的层数
:param d_model: Encoder和Decoder的输出深度
:param num_heads: 多头注意力的头数
:param dff: 前馈网络的中间层深度
:param input_vocab_size: source词表的大小
:param target_vocab_size: target词表的大小
:param pe_input: source词位置id的最大值
:param pe_target: target词位置id的最大值
:param rate: 学习率
"""
super(Transformer, self).__init__()
self.encoder = Encoder(num_layers, d_model, num_heads, dff,
input_vocab_size, pe_input, rate)
self.decoder = Decoder(num_layers, d_model, num_heads, dff,
target_vocab_size, pe_target, rate)
self.final_layer = tf.keras.layers.Dense(target_vocab_size)
def call(self, inp, tar, training, enc_padding_mask,
look_ahead_mask, dec_padding_mask):
enc_output = self.encoder(inp, training, enc_padding_mask) # (batch_size, inp_seq_len, d_model)
# dec_output.shape == (batch_size, tar_seq_len, d_model)
dec_output, attention_weights = self.decoder(
tar, enc_output, training, look_ahead_mask, dec_padding_mask)
final_output = self.final_layer(dec_output) # (batch_size, tar_seq_len, target_vocab_size)
return final_output, attention_weights
优化器
Transformer在优化器这一块对学习率作了独特的处理:
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=4000):
super(CustomSchedule, self).__init__()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
模型训练
参考上两篇博客,同样是采用Teacher Forcing
的方法
模型推理
其实与上两篇博客也是类似。
- Encoder输入还是一样,为source words即待翻译文本;
- Decoder初始输入为开始标记<s>,然后预测得到一个单词;
- 将之前的输入与当前预测得到单词进行拼接,重新输入Decoder进行预测下一个单词;
- 以此循环,直到预测单词为结束标记,或者超过最大长度限制。
更多推荐
所有评论(0)