Ollama 简介

Ollama 是一个基于 Go 语言开发的可以本地运行大模型的开源框架。

官网:ollama.com/

GitHub 地址:github.com/ollama/olla…

Ollama 安装

下载安装 Ollama

在 Ollama 官网根据操作系统类型选择对应的安装包,这里选择 macOS 下载安装。 Ollama下载 安装完在终端输入 ollama,可以看到 ollama 支持的命令。

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.


查看 ollama 版本

ollama -v
ollama version is 0.1.31

查看已下载模型

ollama list

NAME    	ID          	SIZE  	MODIFIED    
gemma:2b	b50d6c999e59	1.7 GB	3 hours ago

我本地已经有一个大模型,接下来我们看一下怎么下载大模型。

下载大模型

下载模型

安装完后默认提示安装 llama2 大模型,下面是 Ollama 支持的部分模型

ModelParametersSizeDownload
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Mistral7B4.1GBollama run mistral
Dolphin Phi2.7B1.6GBollama run dolphin-phi
Phi-22.7B1.7GBollama run phi
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
Llama 2 13B13B7.3GBollama run llama2:13b
Llama 2 70B70B39GBollama run llama2:70b
Orca Mini3B1.9GBollama run orca-mini
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Solar10.7B6.1GBollama run solar

Llama 3 是 Meta 2024年4月19日 开源的大语言模型,共80亿和700亿参数两个版本,Ollama均已支持。

这里选择安装 gemma 2b,打开终端,执行下面命令:

ollama run gemma:2b

pulling manifest 
pulling c1864a5eb193... 100% ▕██████████████████████████████████████████████████████████▏ 1.7 GB                         
pulling 097a36493f71... 100% ▕██████████████████████████████████████████████████████████▏ 8.4 KB                         
pulling 109037bec39c... 100% ▕██████████████████████████████████████████████████████████▏  136 B                         
pulling 22a838ceb7fb... 100% ▕██████████████████████████████████████████████████████████▏   84 B                         
pulling 887433b89a90... 100% ▕██████████████████████████████████████████████████████████▏  483 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 

经过一段时间等待,显示模型下载完成。

上表仅是 Ollama 支持的部分模型,更多模型可以在 ollama.com/library 查看,中文模型比如阿里的通义千问。

终端对话

下载完成后,可以直接在终端进行对话,比如提问“介绍一下React”

>>> 介绍一下React

输出内容如下:

显示帮助命令-/?

>>> /?
Available Commands:
  /set            Set session variables
  /show           Show model information
  /load <model>   Load a session or model
  /save <model>   Save your current session
  /bye            Exit
  /?, /help       Help for a command
  /? shortcuts    Help for keyboard shortcuts

Use """ to begin a multi-line message.

显示模型信息命令-/show

>>> /show
Available Commands:
  /show info         Show details for this model
  /show license      Show model license
  /show modelfile    Show Modelfile for this model
  /show parameters   Show parameters for this model
  /show system       Show system message
  /show template     Show prompt template

显示模型详情命令-/show info

>>> /show info
Model details:
Family              gemma
Parameter Size      3B
Quantization Level  Q4_0


API 调用

除了在终端直接对话外,ollama 还可以以 API 的方式调用,比如执行 ollama show --help 可以看到本地访问地址为:http://localhost:11434

ollama show --help
Show information for a model

Usage:
  ollama show MODEL [flags]

Flags:
  -h, --help         help for show
      --license      Show license of a model
      --modelfile    Show Modelfile of a model
      --parameters   Show parameters of a model
      --system       Show system message of a model
      --template     Show template of a model

Environment Variables:
      OLLAMA_HOST        The host:port or base URL of the Ollama server (e.g. http://localhost:11434)


下面介绍主要介绍两个 api :generate 和 chat。

generate

  • 流式返回
curl http://localhost:11434/api/generate -d '{
  "model": "gemma:2b",
  "prompt":"介绍一下React,20字以内"
}'


{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.337192Z","response":"React","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.421481Z","response":" 是","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.503852Z","response":"一个","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.584813Z","response":"用于","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.672575Z","response":"构建","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.754663Z","response":"用户","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.837639Z","response":"界面","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.918767Z","response":"(","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:32.998863Z","response":"UI","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.080361Z","response":")","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.160418Z","response":"的","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.239247Z","response":" JavaScript","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.318396Z","response":" 库","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.484203Z","response":"。","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.671075Z","response":"它","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.751622Z","response":"允许","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.833298Z","response":"开发者","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:33.919385Z","response":"轻松","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.007706Z","response":"构建","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.09201Z","response":"可","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.174897Z","response":"重","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.414743Z","response":"用的","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.497013Z","response":" UI","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.584026Z","response":",","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.669825Z","response":"并","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.749524Z","response":"与","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.837544Z","response":"各种","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:34.927049Z","response":" JavaScript","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:35.008527Z","response":" ","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:35.088936Z","response":"框架","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:35.176094Z","response":"一起","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:35.255251Z","response":"使用","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:35.34085Z","response":"。","done":false}
{"model":"gemma:2b","created_at":"2024-04-19T10:12:35.428575Z","response":"","done":true,"context":[106,1645,108,25661,18071,22469,235365,235284,235276,235960,179621,107,108,106,2516,108,22469,23437,5121,40163,81964,16464,57881,235538,5639,235536,235370,22978,185852,235362,236380,64032,227725,64727,81964,235553,235846,37694,13566,235365,236203,235971,34384,22978,235248,90141,19600,7060,235362,107,108],"total_duration":3172809302,"load_duration":983863,"prompt_eval_duration":80181000,"eval_count":34,"eval_duration":3090973000}


  • 非流式返回

通过设置 “stream”: false 参数可以设置一次性返回。

``bash curl http://localhost:11434/api/generate -d ‘{ “model”: “gemma:2b”, “prompt”:“介绍一下React,20字以内”, “stream”: false }’

​```json
{
  "model": "gemma:2b",
  "created_at": "2024-04-19T08:53:14.534085Z",
  "response": "React 是一个用于构建用户界面的大型 JavaScript 库,允许您轻松创建动态的网站和应用程序。",
  "done": true,
  "context": [106, 1645, 108, 25661, 18071, 22469, 235365, 235284, 235276, 235960, 179621, 107, 108, 106, 2516, 108, 22469, 23437, 5121, 40163, 81964, 16464, 236074, 26546, 66240, 22978, 185852, 235365, 64032, 236552, 64727, 22957, 80376, 235370, 37188, 235581, 79826, 235362, 107, 108],
  "total_duration": 1864443127,
  "load_duration": 2426249,
  "prompt_eval_duration": 101635000,
  "eval_count": 23,
  "eval_duration": 1757523000
}


chat

  • 流式返回
curl http://localhost:11434/api/chat -d '{
  "model": "gemma:2b",
  "messages": [
    { "role": "user", "content": "介绍一下React,20字以内" }
  ]
}'


可以看到终端输出结果:

{"model":"gemma:2b","created_at":"2024-04-19T08:45:54.86791Z","message":{"role":"assistant","content":"React"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:54.949168Z","message":{"role":"assistant","content":"是"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.034272Z","message":{"role":"assistant","content":"用于"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.119119Z","message":{"role":"assistant","content":"构建"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.201837Z","message":{"role":"assistant","content":"用户"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.286611Z","message":{"role":"assistant","content":"界面"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.37054Z","message":{"role":"assistant","content":" React"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.45099Z","message":{"role":"assistant","content":"."},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.534105Z","message":{"role":"assistant","content":"js"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.612744Z","message":{"role":"assistant","content":"框架"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.695129Z","message":{"role":"assistant","content":","},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.775357Z","message":{"role":"assistant","content":"允许"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.855803Z","message":{"role":"assistant","content":"开发者"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:55.936518Z","message":{"role":"assistant","content":"轻松"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:56.012203Z","message":{"role":"assistant","content":"地"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:56.098045Z","message":{"role":"assistant","content":"创建"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:56.178332Z","message":{"role":"assistant","content":"动态"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:56.255488Z","message":{"role":"assistant","content":"网页"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:56.336361Z","message":{"role":"assistant","content":"。"},"done":false}
{"model":"gemma:2b","created_at":"2024-04-19T08:45:56.415904Z","message":{"role":"assistant","content":""},"done":true,"total_duration":2057551864,"load_duration":568391,"prompt_eval_count":11,"prompt_eval_duration":506238000,"eval_count":20,"eval_duration":1547724000}


默认流式返回,同样可以通过 “stream”: false 参数一次性返回。

generate 和 chat 的区别在于,generate 是一次性生成的数据。chat 可以附加历史记录,多轮对话。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

尧米是由西云算力与CSDN联合运营的AI算力和模型开源社区品牌,为基于DaModel智算平台的AI应用企业和泛AI开发者提供技术交流与成果转化平台。

更多推荐