ollama+FastAPI部署后端大模型调用接口

记录一下开源大模型的后端调用接口过程

一、ollama下载及运行

1. ollama安装

ollama是一个本地部署开源大模型的软件,可以运行llama、gemma、qwen等国内外开源大模型,也可以部署自己训练的大模型

ollama国内地址

下载安装,并运行

PixPin_2025-01-06_10-53-53

ollama图标出现在折叠的任务栏中,就算安装成功了

2. 下载并运行大模型

在ollama管理的模型中,找到自己想要部署的大模型,以qwen2.5-7B大模型为例

ollama启动状态下,终端执行如下命令:

ollama run qwen2.5

image-20250106105916762

如果是首次运行,会先下载,下载之后,就可以运行起来了

PixPin_2025-01-06_11-01-29

此时,已经可以在终端访问大模型了

二、后端接口调用

ollama运行的本地大模型端口号为11434,可以在线调用

有多种方式可以实现大模型的后端调用,只要是后端语言,都可以

因为我的后端有其他深度学习模型要调用,所以我选用的后端语言是python,调用大模型时,自然也选择了python,接口框架使用的是fastapi

后端调用程序如下:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:HP
# datetime:2024/11/11 8:43
from fastapi import HTTPException, APIRouter
import requests
import json
from .inputData import GenerateRequest

big_model_api = APIRouter()

# 定义 Ollama API 的 URL
OLLAMA_API_URL = "http://localhost:11434/v1/completions"  # Ollama 默认运行在本地 11434 端口


@big_model_api.post('/llama')
async def generate_text(request: GenerateRequest):
    # 设置请求头和请求数据
    headers = {"Content-Type": "application/json"}
    data = {
        "model": request.model,
        "prompt": request.prompt,
        "temperature": request.temperature,
        "max_tokens": request.max_tokens,
    }

    # 发送请求给 Ollama API
    response = requests.post(OLLAMA_API_URL, headers=headers, data=json.dumps(data))

    # 检查响应状态并处理结果
    if response.status_code == 200:
        result = response.json()
        return {
            "generated_text": result.get("choices")[0].get("text")
        }
    else:
        raise HTTPException(status_code=response.status_code, detail=response.text)

这里使用的是分布式路由接口,在fastapi的主程序中加入这个名为big_model_api的APIRouter实例,就可以在前端访问这个接口了

当然,需要配合pydantic定义好请求数据的结构,GenerateRequest类定义如下:

# 数据模型,用于接收请求数据
class GenerateRequest(BaseModel):
    model: str = "qwen2.5"  # 模型名称
    prompt: str  # 输入的 prompt
    temperature: float = 0.7  # 温度参数,默认为 0.7
    max_tokens: int = 1000  # 最大生成的 token 数,默认为 200

解释一下:

  • 默认调用的模型是qwen2.5,如果传递其他参数,就可以调用其他模型
  • prompt也就是提示词,就是前端传给后端的问题
  • temperature不知道有啥用
  • max_token其实就是支持返回多长的字符,这个值越大,消耗的资源越大

后端服务启动后,前端正常传递对话内容,请求后端接口,就可以调用大模型进行对话了

C4B46D06-F606-4e7b-BA44-DC491515A708

image-20250106112304865

如果有自己训练的模型,也可以参考这种方式部署上线,但是ollama如何来调用,还需要单独研究

Logo

尧米是由西云算力与CSDN联合运营的AI算力和模型开源社区品牌,为基于DaModel智算平台的AI应用企业和泛AI开发者提供技术交流与成果转化平台。

更多推荐